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Graphical calculi for representing interacting quantum systems serve a number of purposes: com-
positionally, intuitive graphical reasoning, and a logical underpinning for automation. The power of
these calculi stems from the fact that they embody generalized symmetries of the structure of quan-
tum operations, which, for example, stretch well beyond theChoi-Jamiolkowski isomorphism. One
such calculus takes the GHZ and W states as its basic generators. Here we show that this language
allows one to encode standard rational calculus, with the GHZ state as multiplication, the W state as
addition, the Pauli X gate as multiplicative inversion, andthe Pauli Z gate as additive inversion.

1 Introduction

Categorical quantum mechanics[1] aims to recast quantum mechanical notions in terms of symmetric
monoidal categories with additional structure. One layer of extra structure, compactness [17], encom-
passes the well-known Choi-Jamiolkowski isomorphism. Compactness is itself subsumed by the much
richer commutative Frobenius algebra structure [3], whichgoverns classical data, observables, and cer-
tain tripartite states [8, 5, 6, 7]. In this symmetric monoidal form, quantum mechanics enjoys:

• anoperational interpretationby making sequential and parallel composition of systems and pro-
cesses the basic connectives of the language [4];

• an intuitivediagrammatic calculus[4] via the Penrose-Joyal-Street diagrammatic calculus for sym-
metric monoidal categories [19, 16], augmented with Kelly and Laplaza’s coherence result for
compact categories, and Lack’s work on distributive laws [18];

• a logical underpinning[12] via the closed structure resulting from compactness.

The last allows the application of automated reasoning techniques to quantum mechanics [9, 10, 11]. A
prototype software implementation,quantomatic, already exists and is jointly developed in Edinburgh
and Oxford.

Categorical quantum mechanics has meanwhile been successful in solving problems in quantum in-
formation [13] and quantum foundations [6], where other methods and structures failed to be adequate.
Key to these results is the description ofinteracting basis structuresin [5]. The language of that paper
consists of a pair of abstract bases orbasis structures, which are, again in abstract terms, mutually un-
biased, and an abstract generalisation of phases relative to bases. This formalism has been implemented
in quantomatic, and is expressive enough to universally model any linear map f : Q⊗n →Q⊗m, where
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Q = C2. On the other hand, if we restrict the language to the two basis structures only it becomes very
poor, describing no more than 2 qubit states.

This brings us to the subject of this paper. In [7] two of the authors introduced pairs of interacting
commutative Frobenius algebras that do not model bases, butthe tripartite GHZ and W states [14]. Both
these states can indeed be endowed with the structure of a commutative Frobenius algebra, yielding a
GHZ structureand aW structureas we recall in Section 2. The main point of this paper is that the
language consisting of the GHZ structure (which is essentially the same as a basis structure) and the W
structure is already rich enough to encode rational arithmetic, with the exception of additive inverses.
Now an infinite number of qubit states can be described, corresponding to the rational numbers of the
arithmetic system. We demonstrate this in Section 3. In Section 4 we extend the GHZ/W-calculus with
one basic graphical element which then allows additive inverses to be captured. Section 5 addresses the
issue of how to implement the calculus within thequantomatic software.

We assume that the reader is familiar with the diagrammatic calculus for symmetric monoidal cate-
gories [16, 20], which is also reviewed in [7]. We also assumethat the reader is familiar with the (very)
basics of finite dimensional Hilbert spaces and Dirac notation as used in quantum computing.

2 Frobenius Algebras and the GHZ/W-calculus

Fix a symmetric monoidal category(V,⊗, I ,σ). Throughout this paper, we shall define morphisms inV
using the graphical notation defined in [20]. In this notation, ‘wires’ correspond to objects and vertices,
and ‘boxes’ correspond to morphisms. We shall express composition vertically, from top to bottom,
and the monoidal product as (horizontal) juxtaposition of graphs. When wires are not labeled, they are
assumed to represent a fixed object,Q.

Example 2.1. A canonical example throughout will beFHilb , the category of finite-dimensional Hilbert
spaces and linear maps. In this case,⊗ is the usual tensor product,σ the swap mapv⊗w 7→ w⊗v, I :=C

andQ := C2, the space of qubits. We shall also refer the “projective” category of finite-dimensional
Hilbert spaces,FHilb p, whose objects are the same asFHilb and whose arrows are linear maps, taken
to be equivalent iff they differ only by a non-zero scalar.

2.1 Commutative Frobenius Algebras

A commutative Frobenius algebra(CFA) consists of an internal commutative monoid(Q, , ) and an
internal cocommutative comonoid(Q, , ) that interact via the Frobenius law:

=

One can show that any connected graph consisting only of, , , ,σ and 1Q depends only upon
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the number of inputs, outputs, and loops. As such, it can be reduced to a canonical normal form:

...

...

...

In any connected graph, loops are counted as the total numberof edges that can be removed without
disconnecting the graph. We shall use ‘spider’ notation to represent graphs of Frobenius algebras using
vertices of any arity. We express any connected graph as above withm inputs,n outputs, and no loops as
a single vertex of the same colour:

m
︷ ︸︸ ︷

m
︷ ︸︸ ︷

......

=
... ...

︸ ︷︷ ︸

n

︸ ︷︷ ︸

n

We give two of these graphs special names. Thecup is defined as and thecap is defined as .
These induce a compact structure, since

= =

2.2 Phases

Definition 2.2. [5] Given a CFA on an objectA, a morphismf : A→ A is aphaseif we have

f
=

f
=

f
(1)

Equivalently, phases can be described as module endomorphisms, where is considered as a left (or
right) module over itself.
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Proposition 2.3. A phase f: A→ A can be equivalently defined as a morphism of the form:

ψ :=

ψ

(2)

for some elementψ : I → A.

Proof. Given eqs. (1) we have

f =
f

=
f

=

f ◦

where we used unitality of the CFA, and conversely, given eq.(2), eqs. (1) straightforwardly follow by
associativity and commutativity of the CFA. 2

Proposition 2.4. The inverse of a phase is a phase.

Proof. Setting f :=

(

ψ
)−1

we have

f f f

= = =ψ
ψ

f f f

2

2.3 GHZ/W calculus

In this paper, we are concerned not only with general CFAs, but two specific cases, depending on the
behaviour of the loops. We refer to ◦ as theloop mapof a CFA.

Definition 2.5. [7] A GHZ-structureis a special commutative Frobenius algebra; that is, a commutative
Frobenius algebra where the loop map is equal to the identity:

=

These GHZ-structures have also been referred to asbasis structures, for example in [6], because of
their strong connection to bases in finite-dimensional vector spaces. See Theorem 2.10 below.
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Definition 2.6. [7] A W-structureis an anti-special commutative Frobenius algebra. This is commutative
Frobenius algebra whose loop map obeys the following equation:

= (3)

where we use the following short-hand notation:

= =

This distinction essentially comes down to whether the loopmap is singular or invertible.

Lemma 2.7. If the loop map of a CFA is an isomorphism, the CFA can be made special via a phase.

Proof. Consider a CFA( , , , ). Since its loop map is a phase, by Proposition 2.4 so is the inverse

of the loop map, which we denotef . Then( , ,

f
, ) is easily seen to be a special CFA. 2

Lemma 2.8(Herrmann [15]). If the loop of a CFA is disconnected, i.e. factors over the tensor unit, then
it obeys eq.(3), that is the CFA is necessarily anti-special.

The following is an example of a GHZ-structure inFHilb :

= |0〉〈00|+ |1〉〈11| =
√

2|+〉 := |0〉+ |1〉
= |00〉〈0|+ |11〉〈1| =

√
2〈+| := 〈0|+ 〈1|

(4)

and we also have an example of a W-structure inFHilb :

= |1〉〈11|+ |0〉〈01|+ |0〉〈10| = |1〉
= |00〉〈0|+ |01〉〈1|+ |10〉〈1| = 〈0| (5)

Note that the cups for these CFAs do not coincide:

:= = |00〉+ |11〉 := = |01〉+ |10〉

However, the composition of a cap from one CFA with a cup from the other yields the Pauli X, or
‘NOT’, gate:

- := = =

(
0 1
1 0

)

These CFAs respectively induce the following tripartite states:

= |000〉+ |111〉 = |GHZ〉 = |100〉+ |010〉+ |001〉 = |W〉

As the name suggests, the associated tripartite state of theabove GHZ-structure is a GHZ state, and that
of the W-structure is a W state. Furthermore, Theorem 2.9 asserts that for qubits, the associated tripartite
state ofanyGHZ-structure (resp. W-structure) is a GHZ state (resp. W state), up to local operations.
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Theorem 2.9. [7] For any special (respectively anti-special) CFA on a qubit in FHilb , the induced
tripartite state is SLOCC-equivalent to|GHZ〉 (respectively|W〉). Furthermore, any tripartite state|Ψ〉
either induces a special or anti-special CFA-structure, depending on whether it is SLOCC-equivalent to
|GHZ〉 or to |W〉.

Theorem 2.10 justifies the alternative namebasis structurefor GHZ-structures.
Theorem 2.10. [2] Special commutative Frobenius algebras on a finite-dimensional Hilbert spaceH
are in 1-to-1 correspondence with (possibly non-orthogonal) bases forH .

For any special CFA, phases are matrices that are diagonal inthe corresponding basis. The corre-
sponding|ψ〉 (as in proposition 2.3) lies on the equator of the Bloch sphere, justifying the name ‘phases’.

We can also consider interactions between a GHZ-structure and a W-structure.
Definition 2.11. [7] A GHZ- and a W-structure form aGHZ/W-pairif the following equations hold:

- :=
α
=

--

-β
=

γ
= -

ξ
=

By eqs. (β , γ) we also have:

-

--

β ′
=

2.4 Plugging

Since we are often concerned with objects in a monoidal category that are finitary in nature, we can
deduce many new identities using a technique we callplugging.
Definition 2.12. A set of points{ψi : I → Q} form a plugging setfor Q if they suffice to distinguish
maps fromQ. That is, for all objectsA and mapsf ,g : Q→ A,

ψi ψiQ Q

f = g ⇔ ∀i. f = g

A A A A

When we prove a graphical identity by showing two maps are notdistinguished by a plugging set, we
call this ‘proof by plugging.’ Also note that we can extend such proofs to maps of the formf : Q⊗A→B
or f ′ : A → Q⊗B by using the Frobenius caps and cups whenQ has a CFA( , , , ) andA a CFA
( , , , ),

Q A Q A

f f ′

B B

The axioms of a GHZ/W-pair suffice to prove the following lemma for Hilbert spaces.
Lemma 2.13 ([7]). For a GHZ/W-pair on H inFHilb with dim(H) ≥ 2, the points and - span a
2-dimensional space; hence for H= C2 the points and - form a basis.

Motivated by this fact, we assume the that{ , - } forms a plugging set forQ. More explicitly:

- -

f = g ∧ f = g ⇔ f = g
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3 Arithmetic from a GHZ/W-pair

Given a GHZ/W-pair, we can extract an arithmetic system. First, we establish some preliminary results.

3.1 Properties of GHZ-phases

Below, all phases are GHZ-phases. When relying on plugging,we have the following:

Theorem 3.1.

-
ψ

ψ
δ1=

ψ ψ

Proof. Plugging to one input:

-
ψ

ψ = -
ψ

ψ =
- ψ

ψ

= ψ
ψ

=
ψ ψ

Plugging - to one input of both sides:

-
ψ -

ψ = -
ψ

-

-
ψ = -

ψ
-

-
ψ =

ψ
-

ψ
-

-

-
ψ ψ

=

-ψ ψ

=
ψ

-

ψ

=
ψ

-

-

ψ

=
ψ

-
ψ

-

-

2

Theorem 3.2.

ψ δ2= -
ψ

Proof.

ψ =

ψ

= -
ψ

2
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Note that for -phases we have:

1
ψ :=

-

-
ψ =

-

-

ψ

=

-

ψ

=

- ◦ψ

The particular choice of notation1ψ is justified below, and will play a key role in this paper.

Theorem 3.3.
ψ

1
ψ

δ3=
ψ

-
ψ

Proof. Plugging into the input:

ψ

1
ψ

=
-

ψ

ψ =
ψ

-
ψ

Plugging - into the input:
-
ψ

1
ψ

=

-

-

ψ

ψ =
ψ

-
ψ

-

2

In a setting likeFHilb p, where we ignore cancelable scalar multipliers, and provided that the scalars
ψ

and -
ψ

in the equation are cancelable, eqs. (δ1, δ2, δ3) simplify to:

ψ
δ1=

ψ ψ
ψ δ2=

ψ

1
ψ

δ3=

Examples of phases for which some of these simplified equations fail to hold are:

-
-

-

= =

3.2 Natural Number Arithmetic

Assume that we are given a GHZ/W-pair. In particular, we havetwo internal commutative monoids
( , ) and( , ). We will now consider the induced commutative monoids on elements:

(

ψ
,

φ
)

7→
ψ φ (

ψ
,

φ
)

7→
ψ φ
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We will call applied to elementsaddition and applied to elementsmultiplication, for reasons that
will become apparent shortly. Similarly, we calltheunit for additionand theunit for multiplication.
By Theorem 3.1 we have a distributivity law, up to a scalar, partially explaining our choices of the names
addition and multiplication for the monoids:

Corollary 3.4.

-

φ ϕ ψ φ ψ ϕ
ψψ

=

Moreover, we can use these to do concrete arithmetic on the natural numbers. We start by defining
an encoding for the natural numbers:

0 n+1 n
= =

From hence forth, we shall assume we are working in a categorywith no non-trivial invertible (i.e. non-
zero) scalars, such asFHilb p. Thus, we shall drop any invertible scalars. Furthermore, we shall assume
scalar (i.) is invertible for alln and scalar (ii.) is invertible for alln 6= 0:

-
n n

(i.) (ii.)

That is the normal addition operation for these numbers follows immediately from their definition
and associativity of . We can also show that is the normal multiplication operation (noting first that
the encoding of 1 is, and hence the unit of ):

n m
=

m
︷ ︸︸ ︷
. . .

n δ1=

m
︷ ︸︸ ︷

n n
. . .

=

m
︷ ︸︸ ︷

n n
. . .

=
nm

The distributivity law stated earlier now translates into the normal distributivity of multiplication
over addition in the natural numbers, up to a scalar.

3.3 Multiplicative inverses

By Theorem 3.3 we have that- is also an inverse for , up to a scalar:

Corollary 3.5.

-

-

ψ ψ ψ ψ
=
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Hence, we have an encoding for the multiplicative inverses of the natural numbers:

1
n :=

n
︷ ︸︸ ︷

-

. . .

=
-

n

Thoughtout this paper, we shall assume any natural number occurring in the denominator is not equal to
0. This allows us to encode positive fractions in the following form:

n 1
m

1
m

n
n
m = =

where the second equality follows from associativity and commutativity of the GHZ-structure.

Remark 3.6. It should be noted that the construction of this encoding depends on the choice of nu-
merator and denominator, and not just on the rational numberbeing represented. Therefore, we should
demonstrate that the actual point depends only on the numberrepresented. We start by noting that, by
corollary 3.5,

n 1
n

n
n = =

where we have ignored the scalar in corollary 3.5, since it iscancellable for the points that we have used
to encode the natural numbers.

We know that if n
m = n′

m′ , there is ap such thatn= n′p andm= m′p, so it follows easily that

n 1
m n′p 1

m′p n′ p 1
m′

1
p

n′
m′

p
p

n
m

n′
m′= = = = =

Example 3.7. All the usual properties of fractions follow in a straightforward manner from the axioms
of rational arithmetic that we have proved. For example,

n
m

n′
m′

nn′
mm′=

is immediate from the associativity commutativity of the GHZ-structure, and we also have:

n
m

n′
m′

δ3=

n
m

n′
m′

m′
m′

m
m

=

nm′ mn′1
mm′

1
mm′

δ1=

nm′ mn′

1
mm′ =

nm′+mn′
mm′
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where we used distributivity and ignored the scalars; this is fine as the scalars in corollary 3.4 are
cancellable for all the points we are considering.

4 Additive inverses

The last thing we need to actually produce a field of fractionsis additive inverses. Suppose we have an
involutive operation× that is a phase for :

×

= ×

Suppose further that{ , × } forms a plugging set:

× ×
f = g ∧ f = g ⇔ f = g

Then this will act as an additive inverse operation.

Lemma 4.1.

×

= × ×

Proof.
××

= × ×

=

××

= × = × = ×

2

Lemma 4.2.
× =

Proof.

× = × = ×
× = ×× =

2

Lemma 4.3.

×

ψ ψ
= ×

×

ψ ψ

Proof. Follows immediately from Lemma 4.1 and the fact that× is an involution. 2

Theorem 4.4. The cross is additive inverse:

×

ψ ψ
= ×

ψ ψ
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Proof. Proof by plugging: Recall that= 1I .

a)

×

ψ ψ
= ×

ψ ψ

b)

×
×

ψ ψ
Lem.4.3
= ×

ψ ψ
= ×

ψ ψ Lem.4.2
= ×

×

ψ ψ

2

In the case ofFHilb , this operation is the Pauli Z gate multiplied by−1:

× =

(
−1 0
0 1

)

In this case, we have

× = −
√

2|−〉 = |1〉− |0〉

We can now naturally define:

−ψ
:= ×

ψ

and, in particular,

− n
m :=

×

n
m

Thus, we have reconstructed all of the axioms for the field of rational numbers. All of the expected
identities involving × then follow from the field axioms.

5 !-boxes and automation

Graph rewriting is a computation process in which graphs aretransformed by variousrewrite rules. A
rewrite rule can be thought of as a ‘directed graphical equation’. For example, the “specialness” equation
from section 2 could be expressed as a graph rewrite rule:

L : ⇒ R :

A graph rewrite ruleL⇒Rcan be applied to a graphGby identifying amatching, that is, a monomor-
phismm : L → G. The image ofL underm is then removed and replaced byR. This process is called
double pushout (DPO) graph rewriting. A detailed description of how DPO graph rewriting can be
performed on the graphs described in this paper is availablein [11].
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It is also useful to talk not only about ‘concrete’ graph rewrite rules, but alsopattern graphrewrite
rules, which can be used to express an infinite set of rewrite rules. We form pattern graphs using!-
boxes(or ‘bang-boxes’). These boxes identify portions of the graph that can be replicated any number
of times. More precisely, the set of concrete graphs represented by a pattern graph is the set of all graphs
(containing no !-boxes) that can be obtained by performing any sequence of these four operations:

• COPY: copy a !-box and its incident edges

• MERGE: merge two !-boxes

• DROP: remove a !-box, leaving its contents

• KILL: remove a !-box and its contents
For example, the following pattern graph represents the encoding of a natural number given in section
3.2:

t |

=

{

, , , , . . .

}

:=

{

0
,

1
,

2
,

3
, . . .

}

Note how not only the vertices are duplicated, but also all ofthe edges connected to those vertices.
A pattern graph rewrite rule is a pair of pattern graphs with the same inputs and outputs. Furthermore,

there is a bijection between the !-boxes occurring on the LHSand the RHS. When one of the four
operations is performed to a !-box on the LHS, the same is performed to its corresponding !-box on the
RHS.

We can rewrite (the natural numbers versions of) equationsδ1, δ2, andδ3 as pattern graph rewrite
rules.

L : ⇒ R : L : ⇒ R : L :

-

⇒ R :

These equations only apply to encodings of the natural numbers, not for arbitrary inputsψ . However, we
showed in sections 3.2, 3.3, and 4 that even those weaker equations suffice to recover the usual identities
for fraction arithmetic. Also note that the extra white vertices inδ ′

3 eliminate the case of00 6= 1.
So why bother expressing graphical identities as graph rewrite rules? Graph rewriting can be auto-

mated! quantomatic [10] is a automatic graph rewriting tool developed by two of the authors. It is
specifically designed to work with the kinds of diagram described in this paper and to perform pattern
graph rewriting. It remains to be seen what new insights can be obtained by adding the new graphical
identities derived in this paper toquantomatic.

6 Closing Remarks

In previous work two of the authors showed that the main difference between the GHZ state and the W
state, or more precisely, the induced GHZ structure and W structure, boils down to the value of the loop
map of these CFAs:

GHZ
W

=

=

=
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In this paper, by focussing on the interaction of these two structures, we were able to establish a connec-
tion with the operations of basic arithmetic:

W
GHZ

=
+

×
More specifically, the diagrammatic language of these structures was sufficient to encode the positive
rational numbers (and, with a minor extension, the whole field of rational numbers).

In the process of highlighting this encoding, we identified asurprising fact. The distributive law
governing the interaction of addition and multiplication in arithmetic also captures the interaction of the
GHZ-structure and W-structure. Future work includes exploiting this interaction in the study of multi-
partite quantum entanglement, which brings us back to the initial motivation for crafting a compositional
framework to reason about multipartite states.
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